MENENTUKAN JENIS SEGITIGA DENGAN TEOREMA PYTHAGORAS

MENENTUKAN JENIS SEGITIGA DENGAN TEOREMA PYTHAGORAS

Menentukan Jenis Segitiga jika Diketahui Panjang Sisi-Sisinya

Menurut teorema Pythagoras, pada ∆ABC yang siku-siku di C, berlaku c2 = a2 + b2 . Pernyataan tersebut berlaku juga sebaliknya, yaitu jika pada ∆ABC diketahui c2 = a2 + b2 maka ∆ABC merupakan segitiga siku-siku di C. Kebalikan teorema Pythagoras ini dapat digunakan untuk menyelidiki apakah sebuah segitiga merupakan segitiga siku-siku atau bukan.
       Selengkapnya mengenai jenis-jenis segitiga jika diketahui panjang sisinya, yaitu sebagai berikut.
                

Contoh

Coba selidiki apakah ∆ABC dengan panjang sisi 15 cm, 36 cm, dan 39 cm merupakan segitiga siku-siku.
Jawab:
Sisi terpanjang pada ∆ABC memiliki panjang 39 cm. Kamu dapatkan 392 = 1.521.
Sisi-sisi lainnya memiliki panjang 15 cm dan 36 cm. Kamu dapatkan 152 = 225 dan 362 = 1.296.
Coba perhatikan bahwa 152 + 362 = 225 + 1.296 = 1.521.
Jadi, 152 + 362 = 392 .
Oleh karena pada ∆ABC sisi-sisinya memenuhi teorema Pythagoras, maka ∆ABC merupakan segitiga siku-siku.
TRIPEL PYTHAGORAS

TRIPEL PYTHAGORAS

Tripel Pythagoras

Untuk menentukan salah satu sisi pada segitiga siku-siku dengan cepat dapat dilakukan dengan mudah dan tanpa menggunakan teorema Pythagoras. Caranya kamu dapat menggunakan tripel Pythagoras.
             
Berikut ini daftar tripel Pythagoras.
                
Pasangan tripel ini berlaku untuk kelipatannya.

Contoh

Buktikan bahwa 12, 5, 13 merupakan tripel Pythagoras.
Jawab:
Misalkan a = 12, b = 5, dan c = 13.
Berarti, a2 = 144, b2 = 25, dan c2 = 169.
Kamu dapat mengamati bahwa a2 + b2 = 144 + 25 = 169.
Jadi, c2 = a2 + b2 .
Ini berarti, 12, 5, 13 memenuhi teorema Pythagoras sehingga ketiga bilangan tersebut merupakan tripel Pythagoras.

PENGGUNAAN TEOREMA PYTHAGORAS

PENGGUNAAN TEOREMA PYTHAGORAS

Pada topik sebelumnya, kamu sudah mempelajari tentang teorema Pythagoras, yaitu sebagai berikut.
              
Misalnya, pada ∆ABC yang siku-siku di C, berlaku:
                                        

Contoh

Coba tentukan nilai x pada bangun berikut.
                
Jawab:
Dapat kamu amati bahwa ∆ABC siku-siku di B sehingga:
AC2 = AB2 + BC2
⇔ 202 = x2 + 122
⇔400 = x2 + 144
x2 = 400 – 144
x2 = 256
x = 256
x = 16
Jadi, x = 16.
SALAH SATU KEBENARAN TEOREMA PYTHAGORAS

SALAH SATU KEBENARAN TEOREMA PYTHAGORAS

Kebenaran teorema Pythagoras juga dapat diketahui dengan menempatkan persegi di setiap sisi segitiga siku-siku seperti berikut.
                                       
Misalkan kita memiliki persegi A, B, dan C yang masing-masing berukuran ab, dan c. Luas masing-masing persegi adalah La = a2 , Lb = b2 , dan Lc = c2 . Jika a = 3 cm, b = 4 cm, dan c = 5 cm, kita akan mendapatkan bahwa:
Luas persegi pada sisi miring = jumlah luas persegi pada kedua sisi siku-sikunya
Lc = La + Lb
c2 = a2 + b2
⇔52 = 32 + 42
⇔25 = 9 + 16
PENURUNAN RUMUS PYTHAGORAS

PENURUNAN RUMUS PYTHAGORAS

Beberapa konsep yang mendukung penemuan teorema Pythagoras adalah:
a. Luas persegi
Suatu persegi dengan panjang sisi a mempunyai luas L = a x a = a2 .
b. Luas segitiga
Suatu segitiga dengan alas a dan tinggi t mempunyai luas L=12×a×t=12at .
c. Kuadrat jumlah suku aljabar
Pada suku aljabar (a + b), berlaku (a + b)2 = a2 + 2ab + b2 .
Nah, untuk memahami tentang teorema Pythagoras, perhatikan ilustrasi gambar di bawah ini.
                                       
Kita dapat menentukan luas persegi di atas dengan dua cara, yaitu:
a. Menghitung luas persegi besar dengan ukuran sisi (a + b).
Luas persegi dengan ukuran sisi (a + b) adalah L = (a + b)2 = a2 + 2ab + b2 .
b. Menghitung luas 4 segitiga siku-siku dan luas 1 persegi kecil dengan ukuran sisi c pada bagian tengah bangun.
Luas 4 segitiga adalah L1=4.12ab=2ab.
Luas 1 persegi kecil adalah L2=c2.
Luas total adalah L=L1+L2=2ab+c2 .
Kedua cara di atas, tentu akan menghasilkan nilai yang sama, sehingga dapat kita tuliskan:
a2+2ab+b2=2ab+c2a2+b2=c2
Perhatikan bahwa a adalah panjang alas, b adalah tinggi, dan c adalah sisi miring pada segitiga siku-siku. a dan b merupakan dua sisi yang saling tegak lurus yang disebut sisi siku-siku, sedangkan c merupakan sisi di hadapan sudut siku-siku yang disebut dengan hipotenusa atau sisi miring. Dari hasil kesamaan di atas, diperoleh bahwa:
Untuk setiap segitiga siku-siku, kuadrat sisi miring sama dengan jumlah kuadrat kedua sisi siku-sikunya.
                                       
Nah, sifat inilah yang dinamakan dengan teorema Pythagoras.
PENGENALAN TEOREMA PYTHAGORAS

PENGENALAN TEOREMA PYTHAGORAS

Dalam ilmu Matematika, kita bisa mengetahui tinggi suatu benda dengan menggunakan teorema yang berlaku pada segitiga siku-siku. Teorema tersebut dinamakan dengan teorema Pythagoras.
Tahukah Kamu?
Teorema Pythagoras sebenarnya telah dikenal dan digunakan berabad-abad sebelum kelahiran Pythagoras. Pythagoras adalah seorang filsuf asal Yunani yang hidup sekitar abad ke-6 Sebelum Masehi (SM). Di Cina, teorema Pythagoras disebut dengan Gougo Teorema. Teorema ini juga telah dibukukan oleh Baudhayana Sulba Sutra asal India lengkap dengan bukti geometrisnya. Namun, baru pada masa Pythagoras lah teorema ini dapat dibuktikan secara matematis sehingga dinamakan dengan teorema Pythagoras.
       Pemikiran Pythagoras tidak lepas dari kaumnya yang dikenal dengan kaum Pythagorean. Akan tetapi, ketika muridnya yang bernama Hippasus menemukan bilangan irrasional 2 dari sisi miring segitiga siku-siku sama kaki, Phytagoras bersama kaumnya memutuskan untuk membunuh Hippasus karena tidak dapat menyangkal bukti yang diajukannya.

PEMBAHASAN SOAL CERITA MATERI SPLDV

PEMBAHASAN SOAL CERITA MATERI SPLDV

Contoh 1


Harga 4 buah permen A dan 3 buah permen B adalah Rp2.500,00, sedangkan harga 2 buah permen A dan 7 buah permen B adalah Rp2.900,00. Berapakah harga 2 lusin permen A dan 4 lusin permen B?

Penyelesaian:


Mula-mula kita harus membuat 2 buah persamaan linear dari informasi yang diketahui pada soal.

Misalkan:
harga 1 buah permen A = x 
harga 1 buah permen B = 


Kalimat “Harga 4 buah permen A dan 3 buah permen B adalah Rp2.500,00” diubah menjadi,

4x+3y=2500 …. Persamaan (1)

Kalimat “Harga 2 buah permen A dan 7 buah permen B adalah Rp2.900,00” diubah menjadi,

2x+7y=2900 …. Persamaan (2)

Sekarang kita sudah mempunyai 2 persamaan linear. Selanjutnya kita tinggal menyelesaikan SPLDV tersebut dengan menggunakan salah satu metode.

Pada contoh ini kita akan menggunakan metode eliminasi.

Kemudian, nilai y = 300 kita substitusikan ke salah satu persamaan.

4x+3y=25004x+3(300)=25004x+900=25004x=1600x=400

Diperoleh:
harga permen A = Rp400,00
harga permen B = Rp300,00
1 lusin = 12 buah

Harga 2 lusin permen A = 2×12×400=9600
Harga 4 lusin permen B = 4×12×300=14400

Jadi, harga 2 lusin permen A dan 4 lusin permen B adalah Rp9.600,00 dan Rp14.400,00.

Contoh 2


Umur Sani 7 tahun lebih tua dari umur Ari, sedangkan jumlah umur mereka adalah 43 tahun. Berapakah umur mereka masing-masing ?

Penyelesaian:


Mula-mula kita harus membuat 2 buah persamaan linear dari apa yang diketahui pada soal.

Misalkan:
umur Sani = x 
umur Ari = y

Kalimat “Umur Sani 7 tahun lebih tua dari umur Ari” diubah menjadi:

x=7+y …. Persamaan (1)

Kalimat “Jumlah umur mereka adalah 43 tahun” diubah menjadi:

x+y=43 …. Persamaan (2)

Sekarang kita sudah mempunyai 2 persamaan linear. Selanjutnya kita tinggal menyelesaikan SPLDV tersebut dengan menggunakan salah satu metode.

Pada contoh ini kita akan menggunakan teknik substitusi.

Substitusikan nilai x pada persamaan (1) ke persamaan (2), sehingga diperoleh:

x+y=43(7+y)+y=437+2y=432y=4372y=36y=18

Kemudian, kita substitusikan nilai y ke salah satu persamaan:

x+y=43x+18=43x=4318x=25

Jadi, umur Sani 25 tahun dan umur Ari 18 tahun.